Radicals with integrity and row-finite matrices
نویسندگان
چکیده
منابع مشابه
Matrices with Prescribed Row and Column Sums
This is a survey of the recent progress and open questions on the structure of the sets of 0-1 and non-negative integer matrices with prescribed row and column sums. We discuss cardinality estimates, the structure of a random matrix from the set, discrete versions of the Brunn-Minkowski inequality and the statistical dependence between row and column sums.
متن کاملEstimation of matrices with row sparsity
An increasing number of applications is concerned with recovering a sparsity can be defined in terms of lq balls for q 2 [0, 2), defined as Bq(s) = { v = (vi) 2 R2 : n2 ∑
متن کاملRow Products of Random Matrices
Let ∆1, . . . ,∆K be d × n matrices. We define the row product of these matrices as a d × n matrix, whose rows are entry-wise products of rows of ∆1, . . . ,∆K . This construction arises in certain computer science problems. We study the question, to which extent the spectral and geometric properties of the row product of independent random matrices resemble those properties for a d × n matrix ...
متن کاملIntegral Matrices with Given Row and Column Sums
Let P = (p,,) and Q = (qij) be m x n integral matrices, R and S be integral vectors. Let Nf(R, S) denote the class of all m x n integral matrices A with row sum vector R and column sum vector S satisfying P < A < Q. For a wide variety of classes ‘%$I( R, S) satisfying our main condition, we obtain two necessary and sufficient conditions for the existence of a matrix in @(R, 5). The first charac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1970
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1970-0248166-1